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Abstract- The contribution of the long and short range terms 
of the atom-atom interaction within nanocrystals has been 
investigated using three different models. Lennard-Jones, Mie-
Type, and Mie-type combined with Axilrod-Teller potential 
energy functions have been used for the comparison between 
the short and long range terms. Physical importance of these 
models can be understood by studying the behaviour of long 
and short range terms of these potentials. In this paper a study 
on these terms for BCC and FCC nanocrystals has been carried 
out. The study was conducted by computer simulation and 
predicted size dependence of the ratio of the short range to the 
long range terms. Mie-type combined with Axilrod-Teller 
potential successfully describes the mutual variation of long 
and short range terms. 
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1. Introduction
Several researchers have tried to simulate the nature of

atom-atom interaction, the stability, lattice constant, cohesive 
energy, and melting phenomena of nanocrystals during the 
last decade. Models like the surface area difference [SAD] (Qi 
& Wang, 2002), the extended surface area difference [ESAD] 
(Qi et al., 2007a), the generalized surface area difference 
[GSAD]  (Qi 2006a), the liquid drop model [LD] (Nanda et al., 
2002), the latent heat model [LH] (Jiang et al., 2002a), the 
bond energy model [BE](Qi et al. 2003), the extended bond 
energy model [EBE] (Qi et al. 2006b), the generalized bond 

energy [GBE] (Qi et al. 2007b), the bond-order-length-
strength model [BOLS] (Chang et al., 2002 ) were successful 
to predict the cohesive energy of nanocrystals. The melting 
temperature and the cohesive energy change linearly. Many 
researchers (Safai et al.,2007, Qi & Wang 2004a, Qi 2005, 
Jiang et al., 2000b, Zhang et al., 2000) successfully modelled 
and predicted the melting temperature of some nano-
materials. Other researchers, found  quite a distinct structure 
properties between nanoparticles and nanostructured 
materials (Y. F. Zhu, et al., 2009). It was noted that some 
researchers used potential energy functions (PEF) that 
describe the atom-atom interaction in the bulk material for 
modelling the atom-atom interactions in the nanocrystals.  It 
must be realized that the interaction within the nanocrystals 
is totally different from that in bulk material.  Whereas, in 
bulk crystals, the atoms are affected by the electron sea field, 
they are affected in the nanocrystals by Van Der Waals 
interactions formed by diploes. The dipoles are formed by the 
electron clouds along with atoms. This paper develops a test 
to check whether a PEF correctly describes the interaction 
within the nanocrystals or not.   

There were two main approaches to model the atom-
atom interactions in nanocrystals: (i) consider the two, three-
body interactions (Qi et al., 2004b, Barakat et al., 2007, 
Barakat et al., 2009, El-Bayyari 1992a,b, Erkoc 1985, 1988, 
1989a,b, 1990, 1992, 1997, 2000 Coles 1990) or (ii) consider 
the bulk and surface parameters (number of bonds, surface 
energy, melting entropy, etc.). The size dependence of the 
thermodynamic quantities of metallic particles was reported 
as early as 1909 (Jiang et al., 2002a). 

Non-bonded interactions can be divided into two 
classes: short and long range interactions. The short range 
repulsive forces result from the overlapping of electron cloud. 
The models investigated in this paper comprise at least two 
inverse power terms. The ratios of the powers range between 
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“1” and “2”. One of the terms is attractive (negative potential 
energy) and the other is repulsive (positive potential energy). 
The attractive term is considered to be “long range” while the 
repulsive term is “short range”. The attractive term has been 
found to have less exponent power than the repulsive (Kittel 
1995). Long range and short range terms have always been 
an interest for scientists involved in research related to 
molecular dynamics, molecular interactions, condensed 
matter, and nano-science.  

In this paper models and methods of the calculation are 
explained in section 2. Following that the discussion of the 
findings and results are given in section 3 and concluding 
remarks are given in section 4. 

 
2. Model and Method of Calculations 

The method adopted in this study is based on the size 
dependent potential parameters (SDPP) method. The metallic 
nanocrystals are generated from ideal FCC and BCC crystal 
structures assuming a similar internal structure of  the bulk. 
The method of counting particles in a given size is simple. 
One of the atoms is taken as the central one and the radii of 
the shells are integer multiples of the lattice parameter 'a'. 
The determination of the number of shells, the radius, the 
position of individual atoms and the total number of atoms in 
the nanocrystal can also easily be found. 

  The Three different models proposed by three research 
groups which successfully describe the size dependence of 
the cohesive energy of nanocrystals follow: 
 
(i) Lennard-Jones model where atoms are assumed to 
interact via the potential: (Deltour et al. 1997) 
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(ii) Mie-type model with the atom-atom interaction described 

via the potential: (Aydogdu & Sever, 2010) 
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where rij denotes the distance between atoms i and j, ro  
denotes the equilibrium separation between the centers of 
any two atoms, ε denotes the pair energy at ro , m, and k are 
adjustable parameters. 

 
(iii) A Mie-type combined with Axilrod-Teller three body 

term as: (Axilrod & Teller, 1943) 
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where θi, θj, θk and rij, rjk, rik represents the angles and the 
sides of the triangle formed by the three atoms, i, j, and k 
respectively. The parameter z is the intensity of the three 
body interaction. 

The internal energy is given by the sum of the potential 
and the kinetic energies. At 0 K the total energy is given by 
the potential energy. It was found that the difference between 
the cohesive energies of bulk metals at 0 K and their melting 
temperatures are less than 5% (Kittel 1995). So, in this study, 
the calculations are conducted at 0 K and the total energy can 
be found by summing the potential over all the atoms in the 
nanocrystal as (for model (i)): 

 

             ∑ ∑ [(
  

   
)
  

 (
  

   
)
 

] 
   

 
   

                 

                            (5)

   

which can be written as; 
 

           ∑ ∑ [
(
  
 
)
  

(
 

 
)
  

(
   

 
)
   

   (
  
 
)
 
(
 

 
)
 

(
   

 
)
 ] 

   
 

   
                 

                  (6) 

 

Defining the geometrical factor 'g' as: 
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equation (6) reads 
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'g' has definite values for each structure. It has the values of 
(√3)/2  for BCC and 1/(√2) for FCC structures. 
rij/a is the same for all elements of the same structure, so eq. 
(9) will describe fairly well the behaviour of all elements of a 
certain structure. 

The binding energy per atom of a spherical metallic 
nanocrystal with cubic structure is: 
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The stability condition for cubic crystals           )  
at T=0 K is imposed to obtain the minimum energy 

configuration.  
   

  
    which is equivalent to          ,  

since V and d are related via the relation         , where 
    is Avogadro's number. That means 
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the ratio of short range to long range terms is given by: 
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Similarly for model (ii), the total energy per atom 

can be written as: 
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The stability condition reveals that: 
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for which the ratio Δ is given by 
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The results in eqs. (15) and (18) can be generalized for two-
body Mie-type potential to have: 
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The total energy for the last model to be discussed in this 

paper is given by: 
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which can be written as: 
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with g and r* defined as in eqs. (7) and (8). 
 
Let 

       
 

 
∑ ∑

  

(
   

 
)
 

 
   

 
   
       

    
 

 
∑ ∑

  

(
   

 
)
 

 
   

 
   

                 

        (22) 

 

 

           

       
  

  
∑

(                  )

(         )
 

 
     

     

    
 

   
                          (23)                                       

     

Equation (21) can be written as 
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The stability equations reveal: 
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As the size of nanocrystal changes, the ratio r* changes. 
The values of A₄, A₅, A₆, A₈, A₁₂, and Th for FCC and BCC 
structures are given as a function of the number of atoms 'n' 
in the crystal in figures 1, 2, and 3 respectively. From these 
figures, it is apprehensible that the parameters Ai and Th  
depend on the structure of the nanocrystal. In addition, Ai 
depends on the exponent of rij/a. As the exponent approaches 
∞, Ai

s approaches the number of nearest neighbours of a 
certain structure. The ratio rij/a represents the locations of 
the lattice points in space for the respective structure. 
Therefore, the summation can be easily found by summing 
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over all lattice points within the spherical shell of the 
nanocrystal.  z* is the intensity of the three-body term in the 
potential and can be found where FCC and BCC have a 
common minimum energy. The value was found by T, Barakat 
et al. (Barakat et. Al 2009) to be 0.72. As such r* can be found 
from equation (25) and its value depends on the nanocrystal 
size and structure as shown in figure 4. 

For this model, the three-body term acts either as a 

short range, a long range or as a mixture of both (medium 

range). In general it ranges between 24-30% of the long 

range two-body term, so it does not affect the behaviour of Δ 

in general, since it changes very slowly. 

 

           
 

 
   

  

   
   

 

 
(
  

  
)                                                              (26)                                         

       

The ratio Δ as a function of n is shown in figure 5, where 
it shows size dependence for BCC and FCC, respectively. The 
long range term is dominant and the short range forms 23% 
to 17% of the long range for both FCC and BCC structures. 

 
 

Fig. 1.  The lattice sums A₄, A₅, A₆, A₈, and A₁₂ for FCC 
structure as a function of the number of atoms “n”. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The lattice sums A₄, A₅, A₆, A₈, and A₁₂ for BCC 
structure as a function of the number of atoms “n”. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. The potential parameter Th for FCC and BCC structures 

as a function of the number of atoms “n”. 
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Fig. 4: The instantaneous dual change of ro and d for BCC and 

FCC structures as a function of the number of atoms “n”. 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. The ratio of long and short range interaction                  
factors for BCC and FCC structures as a function of the 

number of atoms “n”. 
 

3. Discussion 
The two models proposed by W. Qi et al. (Qi W. H. et al. 

2004b) and T. Barakat et al. (Barakat T. et al. 2009) which 
include the Lennard-Jones (12,6) and Mie-type (6,5) 
respectively, reveal a constant ratio between the long and 
short range terms of the potential. For Lennard-Jones 
potential the long range term is twice that of the short range 
regardless of the structure and the size. For the Mie-Type 
(6,5), Δ approaches unity, as if the short range and long range 
are equal. The effects of long range and short range overlap. 

Figures 1, 2, and 3 show the size dependence of the 
lattice sums for FCC and BCC structures. It can be seen from 
these figures that these parameters increase rapidly as the 

size of the nanocrystal increases and converge to their bulk 
values as n reaches 2000 atoms. 

The ratio r* represents the instantaneous dual change of 
ro and d. It is given by ro/d or equivalently by ro/ag, where “a” 
is the lattice constant. Figure 4 show its size dependence as 
well as its quick convergence towards the bulk values for 
both FCC and BCC. This figure shows that  r* increases as the 
size increases. This means that the lattice constant “a” 
decreases as the size increases. It is quite interesting and 
unclear that “a” decreases as the size increases for 
nanoparticles, while the reverse is predicted for 
nanostructured materials.  

The ratio of the short to the long range terms is shown in 
figure 5 for both FCC and BCC respectively. Δ approaches 
10% at the bulk. The short range term is crucial for small 
nanocrystals where it forms 23% of the long range term. It 
decreases rapidly and starts saturating at n greater than 2000 
atoms. 

 

4. Conclusion 
Three models for the potential energy function have 

been used to investigate the test proposed in this paper. The 
first was the two-body Lennard-Jones, the second was the 
Mie-type with (m, k) as (6, 5) and the third is composed of a 
Mie-type with (m, k) as (8, 4) combined with Axilrod-Teller 
triple dipole terms. Different parameters and lattice sums of 
all the three PEF's were calculated where they showed size 
dependence and the correct convergence toward their bulk 
values. Models (i) and (ii) revealed a constant ratio of the 
short- to the long-range terms of the PEFs as 0.5 and 0.83 
respectively. These results contradict the acceptable 
behaviour of the short and long range terms as one expects 
an increase in short range term when the atoms get closer 
and vice versa. 

Model (iii) predicted to a high accuracy the experimental 
data for Mo and W. According to present work based on this 
model, the ratio of the short- to the long-range terms of the 
PEFs initially decreases rapidly with increasing the number 
of atoms in the nanocrystal reaching 170% of its bulk value at 
n = 2000 atoms. On increasing the number of atoms, the Δ 
exhibits a gradual decrease till the number of atoms in the 
nanocrystal exceeds 12000 for both FCC and BCC structures. 
The three-body part was fine tuned by the parameter z* to 
give a stability condition at z* = 0.72 for both FCC and BCC 
structures. In conclusion, this work demonstrates the 
dependence of both the short- and long-range terms of the 
potential energy function of metallic nanocrystals on the 
range of the potential as well as the size and structure. 

Model (iii) also in specific, describes correctly the 
behaviour of the ratio at the extremes values( i.e. n 
approaches to 0 and bulk) where the long range term gets 
smaller and larger respectively. 
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